8.46.) A random render of 10 miniature Tootsie Rolls was taken from a bag. Each piece was weighed on a realistic accurate scale. The results in grams were 3.087 3.131 3.241 3.241 3.270 3.353 3.400 3.411 3.437 3.477 (a) Construct a 90 ploughshare confidence breakup for the true mean lading. E = 1.96(s/sqrt(n)) = 1.96[0.131989/sqrt(10)]=1.96*0.41739 =0.081808 C.I. = (x-bar-E,x-bar+E) = (3.3048-0.0818,3.3048+0.0818) (b) What specimen coat would be necessary to estimate the true tilt with an error of ± 0.03 grams with 90 percent confidence? n=[z*s/E]^2 n=[1.645*0.131989/0.03]^2 = 52.38; rounding up, n=53 (c) Discuss the genes which skill cause fluctuation in the weight of Tootsie Rolls during manufacture. The equipment that the Tootsie Rolls are make on could be a factor if they are non calibrated properly or as intended. The record book of the equipment or the speed of the candy that is fed into the cutter besides influences the weight. thither could als o be a weight variation if in that location is a fluctuation in the temperature. 8.62.) In 1992, the FAA conducted 86,991 pre-employment dose tests on job applicants who were to be engaged in safety and security-related jobs, and found that 1,143 were positive. (a) Construct a 95 percent confidence interval for the population proportion of positive drug tests.   E = 1.96*sqrt [0.01314*(1-0.01314)/86,991] = 0.0007567.. 95% CI: 0.79615, 83671 (b) Why is the atomic chip 7 trust not a problem, despite the very(prenominal) small time value of p? The normality assumption really is not a problem because the sample size is very large. Even though the small value of p, p is normally distributed by the Central Limit Theorem.If you necessity to yield a full essay, order it on our website: BestEssayCheap.com
If you want to get a full essay, visit our page: cheap essay
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.